

# Kinetics of Carbon Monoxide Methanation on Nickel Catalysts

Luu Cam Loc<sup>a</sup>, Nguyen Manh Huan<sup>a</sup>, N. A. Gaidai<sup>b</sup>, Ho Si Thoang<sup>a</sup>,  
Yu. A. Agafonov<sup>b</sup>, N. V. Nekrasov<sup>b</sup>, and A. L. Lapidus<sup>b</sup>

<sup>a</sup> Institute of Chemical Technology, Vietnamese Academy of Science and Technology, Ho Chi Minh City, Vietnam

<sup>b</sup> Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991 Russia

e-mail: gaidai@server.ioc.ac.ru

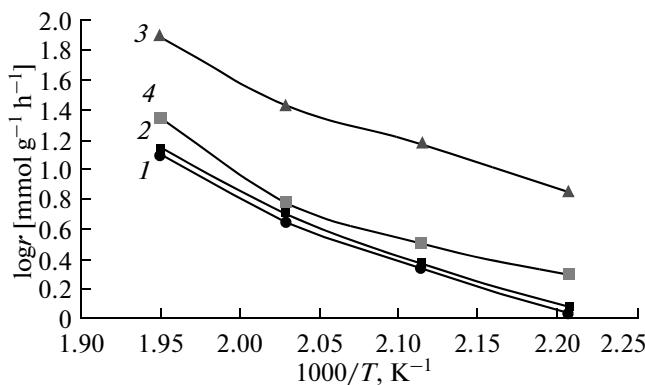
Received April 5, 2011

**Abstract**—The kinetics of CO methanation in excess H<sub>2</sub> on CaO- and CeO<sub>2</sub>-doped nickel catalysts supported on Al<sub>2</sub>O<sub>3</sub> and TiO<sub>2</sub> was studied at atmospheric pressure in a temperature range of 180–240°C. It was found that the same rational fractional rate equation corresponding to the reaction taking place at high surface coverages, is valid for all of the catalysts. The activity of nickel catalysts in the methanation reaction and their adsorption capacity with respect to reaction mixture components depend on the nature of the support and dopants.

**DOI:** 10.1134/S0023158412030093

## INTRODUCTION

The kinetics of CO methanation on nickel catalysts was intensively studied in the 1960s and 1970s, when the use of synthetic natural gas became of considerable interest. The rate equations proposed for this reaction on different nickel catalysts can be divided into zero order equations [1–5], power equations [5–15], and Langmuir–Hinshelwood equations [15–25]. In the power equations, the orders of reaction with respect to hydrogen and CO vary in the ranges from 0.5 to 1.8 and from –0.87 to 1.0, respectively. The partial pressure of water vapor, which inhibits the process, also appear in the power rate equations of methanation [7, 9, 13].


The form of the rate equations of CO methanation depends on the ratio of the initial components and on temperature. For examples, in a study performed by Sehested et al. [5] on a Ni/MgAl<sub>2</sub>O<sub>4</sub> catalyst, the order of reaction with respect to CO was unity at low partial pressures of CO, zero at high partial pressures, and lower than unity but positive at medium partial pressures. In the cited study, the first order with respect to CO was observed on nickel wire, and it was assumed that the slow step of the process is the dissociation of CO (CO<sub>ads</sub> = C<sub>ads</sub> + O<sub>ads</sub>). Ho and Harriott [15] found that the order of the reaction with respect to CO on a Ni/SiO<sub>2</sub> catalyst at high pressures of CO varied from zero to small negative values. At high partial pressures of hydrogen and high temperatures, the order of the reaction with respect to CO became positive, and the order with respect to H<sub>2</sub> varied from 0.5 to 1.0 and increased with increasing P<sub>CO</sub> and decreasing P<sub>H<sub>2</sub></sub>. It was assumed that, at medium partial pressures of CO and H<sub>2</sub>, the slow step is CO<sub>ads</sub> + 2H<sub>ads</sub> = C<sub>ads</sub> + H<sub>2</sub>O,

and the experimental data were best fitted to a Langmuir–Hinshelwood equation. The Langmuir–Hinshelwood equations suggested for the methanation rate, which were derived under the assumption that the surface of nickel catalysts is either homogeneous or inhomogeneous, have different forms: the orders with respect to CO and H<sub>2</sub> in the numerator of the equation vary from 0.5 to 1.0, and the power of the denominator varies from 0.5 to 3.0.

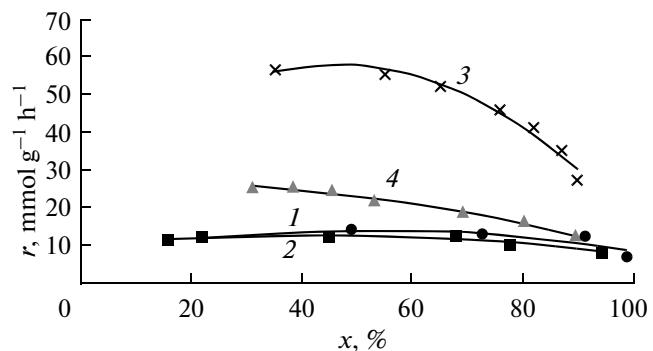
In principle, under certain process conditions, the Langmuir–Hinshelwood equations can be approximated by simpler power equations. The published kinetic description [26, 27] of CO methanation on Ni/Al<sub>2</sub>O<sub>3</sub> in the unsteady-state region assumes that strongly adsorbed species, including CO, participate in the reaction. In a number of publications [12, 16, 18, 19, 23], a maximum was detected in the dependence of the rate of methane formation on P<sub>CO</sub>. The absence of this maximum can be explained by an insufficiently wide interval of the variation of the partial pressures of parent substances.

The form of the rate equation does not allow one to unambiguously judge the nature of the slow step of the process because the same rate equation can be derived based on different assumptions about the slow step of the reaction and different rate equations can correspond to the same slow step (for example, at different adsorbate coverages of the surface) [28].

Thus, the kinetics of CO methanation on nickel catalysts can be described by various equations ranging from simple power equations to fractional rational equations. The development of an adequate kinetic model is of considerable importance because a rate equation can serve as a basis for designing industrial



**Fig. 1.** The temperature dependence of the reaction rate in the Arrhenius coordinates for the following catalysts: (1) NiTi, (2) NiAl, (3) NiCaAl, and (4) NiCeAl.


reactors and for optimizing the operation conditions. The purpose of this work was to study the kinetics of CO methanation on different supported nickel catalysts and the effect of calcium and cerium dopants on the reaction kinetics. Previously, we used isotopic and unsteady-state methods to investigate the mechanism of CO methanation [29] and proposed a step-by-step reaction scheme; however, comprehensive data on the kinetics of the reaction are required for solving the problem of the nature of the slow step.

## EXPERIMENTAL

The reaction kinetics was studied in a flow-circulation sealed glass system at atmospheric pressure. The experiments were performed at the initial partial pressures  $P_{\text{CO}}^0 = 5\text{--}30\text{ hPa}$  and  $P_{\text{H}_2}^0 = 167\text{--}667\text{ hPa}$  in the presence of methane ( $P_{\text{CH}_4}^0$  to 30 hPa) and water vapor ( $P_{\text{H}_2\text{O}}^0$  to 43.3 hPa). The temperature range was 180–240°C, and the gas mixture flow rate was varied from 3 to 48 L/h. Under these conditions, methanation was almost irreversible. The CO conversion ( $x$ ) varied from 5.6 to 97.3%. Nitrogen was used as the diluent.

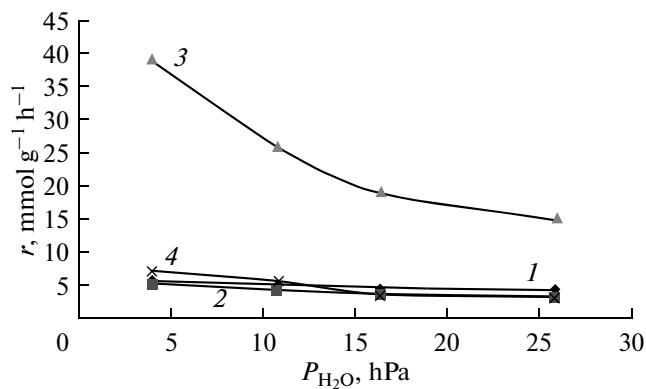
As previously [29], the experiments were carried out on the following nickel catalysts: 7.5 wt % NiO/TiO<sub>2</sub> (NiTi), 37.5% NiO/γ-Al<sub>2</sub>O<sub>3</sub> (NiAl), (37.5% NiO + 10.2% CaO)/γ-Al<sub>2</sub>O<sub>3</sub> (NiCaAl), and (37.5% NiO + 0.1% Ce<sub>2</sub>O<sub>3</sub>)/γ-Al<sub>2</sub>O<sub>3</sub> (NiCeAl). The above catalyst compositions are optimal for this reaction [30–33]. Before the experiments, the catalysts were reduced with hydrogen (GHSV = 3000 h<sup>-1</sup>, 450°C) for 8 h.

At a constant space velocity and invariable initial concentrations of carbon monoxide and hydrogen, the rate of methanation on the most active NiCaAl catalyst at 240°C did not depend on the rate of circulation; that is, external diffusion was not a limiting factor in



**Fig. 2.** Dependence of the reaction rate on the CO conversion at 240°C,  $P_{\text{H}_2}^0 = 333\text{ hPa}$ , and  $P_{\text{CO}}^0 = 10\text{ hPa}$  on the following catalysts: (1) NiTi, (2) NiAl, (3) NiCaAl, and (4) NiCeAl.

the process. A change in the particle size of the catalysts from 0.31 to 3.0 mm also had no effect on the process; that is, the reaction was kinetically controlled.


An HP-PLOT column packed with molecular sieve 5 Å and a thermal-conductivity detector were used in the gas-chromatographic analysis of CO, and an HP-1 capillary column with dimethylpolysiloxane and a flame-ionization detector were used in the determination of methane and hydrocarbons.

## RESULTS AND DISCUSSION

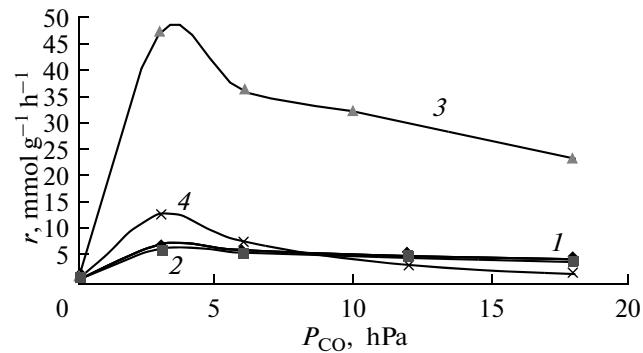
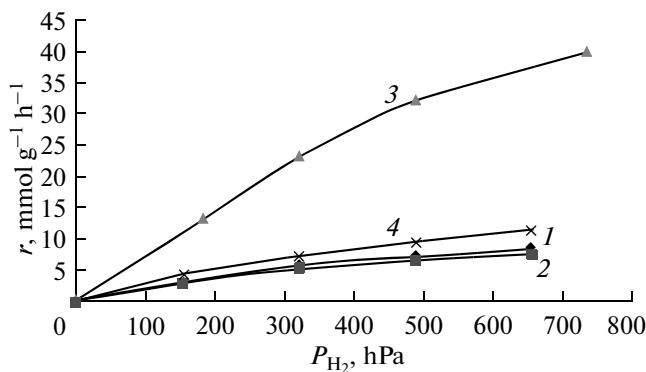

The analysis of the reaction mixture showed that CH<sub>4</sub> and H<sub>2</sub>O are the only reaction products. The temperature dependence of the rate of methanation ( $r$ ) in the Arrhenius coordinates ( $\ln r - 1/T$ ) at a constant composition of the reaction mixture is nonlinear; this fact is indicative of a fractional rational rather than power form of the rate equation (Fig. 1).

Figure 2 shows the dependence of the rate of the reaction at 240°C and constant initial conditions on the CO conversion (so-called conversion curves). The curves recorded at the other temperatures have the same shape. The curves for the NiCaAl and NiCeAl catalysts are convex, whereas the curves for the NiTi and NiAl pass through a small maximum. These shapes of the conversion curves suggest that the reaction is more strongly inhibited by the parent substances than by the products [34]. Bashkirova and Kiperman [34] also demonstrated that the rate equation can be invariable even if the shape of the conversion curve changes.


Because CH<sub>4</sub> and H<sub>2</sub>O form in equimolar quantities, it is impossible to separately determine the influence of either product on the reaction rate. In order to clarify this issue, it is necessary to gain data on the reaction rate at different ratios between CH<sub>4</sub> and H<sub>2</sub>O in the reaction mixture. For this purpose, different quantities of CH<sub>4</sub> and H<sub>2</sub>O were added to the initial



**Fig. 3.** Dependence of the reaction rate on the partial pressure of water vapor at 220°C,  $P_{\text{H}_2} = 200$  hPa, and  $P_{\text{CO}} = 6.0$  hPa for the following catalysts: (1) NiTi, (2) NiAl, (3) NiCaAl, and (4) NiCeAl.



**Fig. 4.** Dependence of the reaction rate on the partial pressure of CO at 220°C and  $P_{\text{H}_2} = 200$  hPa for the following catalysts: (1) NiTi, (2) NiAl, (3) NiCaAl, and (4) NiCeAl.



**Fig. 5.** Dependence of the reaction rate on the partial pressure of hydrogen at 220°C,  $P_{\text{CO}} = 6$  hPa, and  $P_{\text{H}_2\text{O}} = 4.0$  hPa for the following catalysts: (1) NiTi, (2) NiAl, (3) NiCaAl, and (4) NiCeAl.

mixture. Data analysis showed that  $\text{CH}_4$  has no effect on the reaction rate, whereas an increase in the concentration of water vapor leads to a decrease in the reaction rate (Fig. 3). Consequently, the partial pressure of water vapor should enter into the denominator of the rate equation.

Figure 4 shows the dependence of the reaction rate on the partial pressure of CO at constant concentrations of the other reaction components. The curve has a maximum at low  $P_{\text{CO}}$  (~3.5 hPa). This fact suggests

that the partial pressure of CO enters into both the numerator and the denominator of the rate equation, and the power in the denominator is higher than the power in the numerator [34].

The dependence of the reaction rate on the partial pressure of hydrogen at constant concentrations of the other reaction components (Fig. 5) indicates that  $r$  increases nonlinearly with an increasing hydrogen concentration. This also suggests that the partial pressure

**Table 1.** Kinetic data for CO methanation on the 37.5% NiO/γ-Al<sub>2</sub>O<sub>3</sub> catalyst

| T, °C | x, %  | P <sub>CO</sub> | P <sub>H<sub>2</sub></sub> | P <sub>H<sub>2</sub>O</sub> | P <sub>CH<sub>4</sub></sub> | r <sub>exp</sub>                     | r <sub>calc</sub> | Δ, %  |
|-------|-------|-----------------|----------------------------|-----------------------------|-----------------------------|--------------------------------------|-------------------|-------|
|       |       | hPa             |                            |                             |                             | mmol g <sup>-1</sup> h <sup>-1</sup> |                   |       |
| 180   | 23.8  | 3.8             | 329                        | 1.2                         | 1.2                         | 1.06                                 | 0.67              | 37.3  |
|       | 6.2   | 28.1            | 327                        | 1.9                         | 1.9                         | 0.56                                 | 0.36              | 35.0  |
|       | 12.1  | 8.8             | 329                        | 1.2                         | 1.2                         | 0.81                                 | 0.68              | 16.6  |
|       | 16.5  | 8.4             | 328                        | 1.6                         | 1.6                         | 0.74                                 | 0.56              | 24.5  |
|       | 14.6  | 8.5             | 329                        | 1.5                         | 1.5                         | 0.65                                 | 0.60              | 7.3   |
| 200   | 52.4  | 4.8             | 651                        | 5.2                         | 5.2                         | 3.51                                 | 3.72              | 5.9   |
|       | 20.1  | 8.0             | 661                        | 2.0                         | 2.1                         | 3.59                                 | 4.14              | 15.2  |
|       | 18.1  | 8.2             | 495                        | 1.8                         | 1.8                         | 3.23                                 | 3.95              | 22.3  |
|       | 11.5  | 8.9             | 497                        | 1.2                         | 1.2                         | 4.11                                 | 3.96              | 3.7   |
|       | 7.85  | 27.6            | 326                        | 2.4                         | 2.4                         | 1.40                                 | 1.76              | 25.5  |
|       | 12.9  | 8.7             | 329                        | 1.3                         | 1.3                         | 3.46                                 | 3.63              | 5.1   |
|       | 10.5  | 9.0             | 330                        | 1.0                         | 1.0                         | 3.75                                 | 3.62              | 3.4   |
|       | 18.3  | 8.2             | 327                        | 23.7                        | 1.8                         | 1.63                                 | 1.76              | 7.4   |
|       | 10.7  | 18.0            | 327                        | 2.1                         | 2.1                         | 1.91                                 | 2.40              | 26.0  |
|       | 16.8  | 8.3             | 328                        | 8.5                         | 1.7                         | 2.25                                 | 2.82              | 25.4  |
| 220   | 71.9  | 2.8             | 645                        | 7.2                         | 7.2                         | 6.42                                 | 5.27              | 17.9  |
|       | 41.5  | 5.8             | 654                        | 4.2                         | 4.2                         | 7.41                                 | 6.27              | 15.4  |
|       | 79.0  | 2.1             | 476                        | 7.9                         | 7.9                         | 5.29                                 | 4.59              | 13.2  |
|       | 60.9  | 3.9             | 482                        | 6.1                         | 6.1                         | 5.44                                 | 5.71              | 5.0   |
|       | 36.3  | 6.4             | 489                        | 3.6                         | 3.6                         | 6.48                                 | 5.98              | 7.7   |
|       | 26.6  | 7.3             | 492                        | 2.7                         | 2.7                         | 7.13                                 | 5.93              | 16.7  |
|       | 86.7  | 1.3             | 307                        | 8.7                         | 8.7                         | 3.87                                 | 3.54              | 8.5   |
|       | 65.5  | 3.4             | 314                        | 6.6                         | 6.6                         | 4.39                                 | 5.26              | 19.8  |
|       | 39.4  | 6.1             | 321                        | 3.9                         | 3.9                         | 5.28                                 | 5.49              | 4.0   |
|       | 21.2  | 7.9             | 327                        | 2.1                         | 2.1                         | 5.68                                 | 5.32              | 6.2   |
|       | 20.9  | 7.9             | 161                        | 2.1                         | 2.1                         | 3.73                                 | 4.32              | 15.8  |
|       | 63.7  | 1.8             | 323                        | 3.2                         | 3.2                         | 5.69                                 | 5.87              | 3.2   |
|       | 37.7  | 3.1             | 327                        | 1.9                         | 1.9                         | 6.73                                 | 6.81              | 1.2   |
|       | 58.8  | 8.2             | 298                        | 11.8                        | 11.8                        | 3.50                                 | 3.80              | 8.8   |
|       | 42.8  | 11.4            | 307                        | 8.6                         | 8.6                         | 3.82                                 | 3.68              | 3.9   |
|       | 31.8  | 20.4            | 304                        | 9.6                         | 9.6                         | 2.84                                 | 2.57              | 9.5   |
|       | 23.8  | 22.9            | 312                        | 7.1                         | 7.1                         | 3.19                                 | 2.49              | 21.9  |
|       | 75.0  | 2.5             | 310                        | 14.3                        | 7.5                         | 3.35                                 | 3.38              | 0.79  |
|       | 46.3  | 5.4             | 319                        | 11.4                        | 4.6                         | 4.13                                 | 4.24              | 2.6   |
|       | 25.6  | 7.4             | 325                        | 9.4                         | 2.6                         | 4.57                                 | 4.31              | 5.7   |
|       | 17.3  | 8.3             | 328                        | 8.5                         | 1.7                         | 4.63                                 | 4.29              | 7.4   |
|       | 54.3  | 4.6             | 317                        | 17.8                        | 5.4                         | 3.64                                 | 3.37              | 7.5   |
|       | 22.0  | 7.8             | 326                        | 14.6                        | 2.2                         | 3.93                                 | 3.67              | 6.7   |
|       | 55.0  | 4.5             | 316                        | 27.4                        | 5.5                         | 2.46                                 | 2.46              | 0.36  |
|       | 37.1  | 6.3             | 322                        | 25.6                        | 3.7                         | 3.31                                 | 2.74              | 17.15 |
|       | 25.4  | 7.5             | 325                        | 24.4                        | 2.5                         | 3.40                                 | 2.84              | 16.4  |
|       | 11.7  | 8.8             | 329                        | 23.1                        | 1.2                         | 3.13                                 | 2.91              | 7.2   |
|       | 30.1  | 7.0             | 324                        | 3.0                         | 13.0                        | 5.38                                 | 5.42              | 0.76  |
|       | 30.0  | 7.0             | 324                        | 3.0                         | 23.0                        | 5.38                                 | 5.42              | 0.76  |
|       | 30.10 | 7.0             | 324                        | 3.0                         | 33.0                        | 5.38                                 | 5.42              | 0.76  |

**Table 1.** (Contd.)

| T, °C | x, % | P <sub>CO</sub> | P <sub>H<sub>2</sub></sub> | P <sub>H<sub>2</sub>O</sub> | P <sub>CH<sub>4</sub></sub> | r <sub>exp</sub>                     | r <sub>calc</sub> | Δ, % |
|-------|------|-----------------|----------------------------|-----------------------------|-----------------------------|--------------------------------------|-------------------|------|
|       |      | hPa             |                            |                             |                             | mmol g <sup>-1</sup> h <sup>-1</sup> |                   |      |
| 240   | 86.9 | 1.3             | 641                        | 8.7                         | 8.7                         | 15.5                                 | 12.8              | 17.7 |
|       | 82.1 | 1.8             | 475                        | 8.2                         | 8.2                         | 14.7                                 | 14.0              | 4.2  |
|       | 68.1 | 3.2             | 313                        | 6.8                         | 6.8                         | 12.2                                 | 13.5              | 10.7 |
|       | 52.1 | 4.8             | 484                        | 4.8                         | 4.8                         | 17.0                                 | 14.7              | 13.3 |
|       | 94.4 | 0.56            | 305                        | 9.4                         | 9.4                         | 8.43                                 | 8.92              | 5.8  |
|       | 45.0 | 5.5             | 320                        | 4.5                         | 4.5                         | 12.0                                 | 11.5              | 4.65 |
|       | 15.9 | 8.4             | 328                        | 1.6                         | 1.6                         | 11.4                                 | 9.4               | 17.4 |
|       | 28.2 | 7.2             | 158                        | 2.8                         | 2.8                         | 7.55                                 | 7.97              | 5.5  |
|       | 69.8 | 1.5             | 322                        | 3.5                         | 3.5                         | 12.5                                 | 15.6              | 25.2 |
|       | 88.3 | 1.2             | 306                        | 30.7                        | 8.8                         | 7.88                                 | 6.78              | 14.0 |
|       | 62.3 | 3.8             | 314                        | 28.1                        | 6.2                         | 8.34                                 | 8.99              | 7.8  |
|       | 90.0 | 1.0             | 306                        | 21.4                        | 9.0                         | 8.04                                 | 8.05              | 0.16 |
|       | 63.6 | 3.6             | 314                        | 18.8                        | 6.4                         | 8.52                                 | 10.5              | 23.3 |
|       | 71.3 | 2.9             | 312                        | 13.9                        | 7.1                         | 9.55                                 | 11.8              | 24.1 |

of hydrogen enters into both the numerator and denominator of the reaction rate equation.

Tables 1–4 list kinetic data for CO methanation on nickel catalysts. It follows from these experimental data that, in general form, the rate of CO methanation on NiTi, NiAl, NiCaAl, and NiCeAl is described by the following equation:

$$r = \frac{k_1 P_{CO}^{l_1} P_{H_2}^{m_1}}{(k_2 P_{H_2}^{m_2} + k_3 P_{CO}^{l_2} + k_4 P_{H_2O}^n)^{2\alpha}}, \quad (1)$$

where  $k_1$ – $k_4$  are constants and  $\alpha$  is the linearity ratio coefficient.

Computer-aided calculation of the kinetic data given in Tables 1–4 showed that Eq. (1) provides the best fit to these data at  $l_1 = l_2 = 1$ ,  $m_1 = m_2 = 0.5$ ,  $n = 1$ , and  $\alpha = 1$ ; therefore,

$$r = \frac{k_1 P_{CO} P_{H_2}^{0.5}}{(k_2 P_{H_2}^{0.5} + k_3 P_{CO} + k_4 P_{H_2O})^2}. \quad (2)$$

Table 5 presents the numerical values of the constants, taking into account all of the experimental data, and also specifies the root-mean-square deviations of the

calculated rates of CO methanation from their experimental values ( $\Delta$ ). The linear dependence of  $1/r^{0.5}$  on  $P_{H_2O}$  at constant  $P_{CO}$  and  $P_{H_2}$  demonstrates that  $P_{H_2O}$  to the first power enters into the denominator of the rate equation at  $\alpha = 1$  (Fig. 6). The value of  $\alpha = 1$  corresponds to the proceeding of the reaction at high adsorbate coverages of the surface.

The numerical values of the constants show that CO is adsorbed more strongly than hydrogen. The ratio  $k_2/k_3$  at 220°C for the nickel catalysts supported on  $Al_2O_3$  varies in the range from 0.12 to 0.14. The introduction of Ca or Ce into the NiAl catalyst weakens the adsorption of water vapor, which substantially increases the activity of the catalyst containing Ca. The rates of CO methanation on NiTi and NiAl are similar; however, on a Ni atom basis, they are higher for the former catalyst.

In an earlier study [29] the reaction mechanism of CO methanation was investigated using isotopic and unsteady-state methods and the following step-by-step reaction scheme was proposed for the nickel catalysts (Z is an active surface site):

- (1)  $H_2 + Z \rightarrow 2HZ$ ,
- (2)  $CO + Z \rightarrow [CO]Z$ ,
- (3)  $[CO]Z + HZ \rightarrow [COH]Z + Z$ ,
- (4)  $[COH]Z + HZ \rightarrow [HCOH]Z + Z$ ,

**Table 2.** Kinetic data for CO methanation on the 7.5% NiO/TiO<sub>2</sub> catalyst

| T, °C | x, % | P <sub>CO</sub> | P <sub>H<sub>2</sub></sub> | P <sub>H<sub>2</sub>O</sub> | P <sub>CH<sub>4</sub></sub> | r <sub>exp</sub>                     | r <sub>calc</sub> | Δ, % |
|-------|------|-----------------|----------------------------|-----------------------------|-----------------------------|--------------------------------------|-------------------|------|
|       |      | hPa             |                            |                             |                             | mmol g <sup>-1</sup> h <sup>-1</sup> |                   |      |
| 180   | 13.7 | 8.6             | 663                        | 1.4                         | 1.4                         | 1.22                                 | 0.90              | 26.1 |
|       | 12.3 | 8.8             | 496                        | 1.2                         | 1.2                         | 1.1                                  | 0.93              | 15.9 |
|       | 37.9 | 6.2             | 322                        | 3.8                         | 3.8                         | 0.85                                 | 0.78              | 8.4  |
|       | 14.7 | 8.5             | 329                        | 1.5                         | 1.5                         | 0.98                                 | 0.92              | 6.7  |
|       | 13.6 | 4.3             | 331                        | 0.7                         | 0.7                         | 0.91                                 | 0.83              | 8.7  |
|       | 8.5  | 4.6             | 332                        | 0.43                        | 0.43                        | 1.14                                 | 0.86              | 24.5 |
|       | 10.0 | 27.0            | 324                        | 3.0                         | 3.0                         | 0.67                                 | 0.68              | 2.2  |
|       | 13.5 | 8.6             | 329                        | 1.4                         | 1.4                         | 0.90                                 | 0.92              | 2.8  |
|       | 26.5 | 7.4             | 325                        | 2.6                         | 2.6                         | 0.89                                 | 0.85              | 4.0  |
|       | 10.8 | 8.9             | 330                        | 1.1                         | 1.1                         | 0.89                                 | 0.94              | 5.1  |
|       | 8.6  | 9.1             | 164                        | 0.86                        | 0.86                        | 0.77                                 | 0.91              | 18.6 |
|       | 18.5 | 4.1             | 330                        | 0.93                        | 0.93                        | 0.83                                 | 0.80              | 3.7  |
|       | 12.0 | 17.6            | 326                        | 2.4                         | 2.4                         | 0.80                                 | 0.82              | 1.9  |
|       | 13.8 | 8.6             | 329                        | 1.4                         | 1.4                         | 0.92                                 | 0.92              | 0.37 |
| 200   | 20.2 | 8.0             | 661                        | 2.0                         | 2.0                         | 3.61                                 | 2.71              | 24.8 |
|       | 30.4 | 7.0             | 491                        | 3.0                         | 3.0                         | 2.71                                 | 2.62              | 3.5  |
|       | 15.7 | 8.4             | 495                        | 1.6                         | 1.6                         | 2.80                                 | 2.64              | 5.6  |
|       | 23.8 | 22.9            | 312                        | 7.1                         | 7.1                         | 1.59                                 | 1.39              | 12.7 |
|       | 29.2 | 14.2            | 316                        | 5.8                         | 5.8                         | 1.96                                 | 1.84              | 6.0  |
|       | 15.4 | 16.9            | 324                        | 3.0                         | 3.0                         | 2.06                                 | 1.77              | 13.8 |
|       | 50.1 | 5.0             | 318                        | 5.0                         | 5.0                         | 2.24                                 | 2.41              | 7.7  |
|       | 26.6 | 7.3             | 325                        | 2.7                         | 2.7                         | 2.38                                 | 2.50              | 5.2  |
|       | 20.3 | 4.0             | 330                        | 1.0                         | 1.0                         | 2.72                                 | 2.78              | 2.2  |
|       | 25.7 | 7.4             | 325                        | 24.5                        | 2.6                         | 1.72                                 | 1.45              | 15.5 |
|       | 22.1 | 7.8             | 326                        | 9.0                         | 2.2                         | 1.97                                 | 2.09              | 5.7  |
|       | 18.4 | 8.2             | 327                        | 23.7                        | 1.8                         | 1.64                                 | 1.48              | 9.6  |
|       | 26.9 | 7.3             | 325                        | 15.1                        | 2.7                         | 1.80                                 | 1.80              | 0.11 |
|       | 14.1 | 8.5             | 329                        | 13.8                        | 1.4                         | 1.89                                 | 1.84              | 2.8  |
| 220   | 27.8 | 7.2             | 325                        | 9.6                         | 2.8                         | 1.86                                 | 2.07              | 11.3 |
|       | 17.9 | 8.2             | 328                        | 1.8                         | 1.8                         | 2.40                                 | 2.49              | 3.9  |
|       | 15.5 | 8.4             | 328                        | 1.6                         | 1.6                         | 2.77                                 | 2.49              | 10.2 |
|       | 62.0 | 3.8             | 648                        | 6.2                         | 6.2                         | 8.30                                 | 6.80              | 18.1 |
|       | 51.2 | 4.9             | 485                        | 5.1                         | 5.1                         | 6.86                                 | 6.47              | 5.6  |
|       | 18.9 | 8.1             | 494                        | 1.9                         | 1.9                         | 6.75                                 | 5.68              | 15.8 |
|       | 32.1 | 6.8             | 323                        | 3.2                         | 3.2                         | 5.73                                 | 5.44              | 5.1  |
|       | 20.9 | 7.9             | 161                        | 2.1                         | 2.1                         | 3.73                                 | 4.11              | 10.0 |
|       | 51.2 | 2.4             | 325                        | 2.6                         | 2.6                         | 6.86                                 | 7.19              | 4.8  |
|       | 23.8 | 3.8             | 329                        | 1.2                         | 1.2                         | 6.38                                 | 7.03              | 10.2 |

Table 2. (Contd.)

| T, °C | x, % | P <sub>CO</sub> | P <sub>H<sub>2</sub></sub> | P <sub>H<sub>2</sub>O</sub> | P <sub>CH<sub>4</sub></sub> | r <sub>exp</sub>                     | r <sub>calc</sub> | Δ, % |
|-------|------|-----------------|----------------------------|-----------------------------|-----------------------------|--------------------------------------|-------------------|------|
|       |      | hPa             |                            |                             |                             | mmol g <sup>-1</sup> h <sup>-1</sup> |                   |      |
| 220   | 64.3 | 3.6             | 314                        | 18.8                        | 6.4                         | 4.31                                 | 4.78              | 10.9 |
|       | 35.5 | 6.4             | 322                        | 15.9                        | 3.6                         | 4.75                                 | 4.58              | 3.7  |
|       | 17.3 | 8.3             | 328                        | 14.1                        | 1.7                         | 4.63                                 | 4.29              | 7.5  |
|       | 60.8 | 3.9             | 315                        | 28.0                        | 6.1                         | 4.07                                 | 4.03              | 1.1  |
|       | 33.3 | 6.7             | 323                        | 25.2                        | 3.3                         | 4.46                                 | 3.98              | 10.7 |
|       | 16.2 | 8.4             | 328                        | 23.5                        | 1.62                        | 4.34                                 | 3.81              | 12.2 |
|       | 41.8 | 5.8             | 320                        | 4.2                         | 14.2                        | 5.60                                 | 5.72              | 2.2  |
|       | 41.8 | 5.8             | 320                        | 4.2                         | 34.2                        | 5.60                                 | 5.72              | 2.2  |
|       | 58.9 | 4.1             | 315                        | 5.9                         | 5.9                         | 5.26                                 | 6.17              | 17.2 |
|       | 14.1 | 8.6             | 329                        | 1.4                         | 1.4                         | 5.04                                 | 4.95              | 1.6  |
|       | 74.8 | 2.5             | 478                        | 7.5                         | 7.5                         | 6.68                                 | 6.39              | 4.3  |
|       | 39.0 | 6.1             | 488                        | 3.9                         | 3.9                         | 6.96                                 | 6.20              | 11.0 |
|       | 13.8 | 8.6             | 163                        | 1.4                         | 1.4                         | 3.70                                 | 3.94              | 6.5  |
|       | 72.3 | 1.4             | 322                        | 3.6                         | 3.6                         | 6.46                                 | 6.44              | 0.19 |
| 240   | 86.4 | 1.4             | 474                        | 8.6                         | 8.6                         | 15.4                                 | 16.0              | 3.9  |
|       | 75.4 | 2.5             | 477                        | 7.5                         | 7.5                         | 20.2                                 | 15.9              | 21.0 |
|       | 60.6 | 3.9             | 315                        | 6.1                         | 6.1                         | 10.8                                 | 12.6              | 16.5 |
|       | 40.6 | 5.9             | 321                        | 4.1                         | 4.1                         | 10.9                                 | 10.2              | 5.9  |
|       | 26.8 | 7.3             | 325                        | 2.7                         | 2.7                         | 9.57                                 | 9.04              | 5.6  |
|       | 93.4 | 0.66            | 305                        | 9.3                         | 9.3                         | 12.5                                 | 13.3              | 6.0  |
|       | 81.1 | 1.9             | 309                        | 8.1                         | 8.1                         | 14.5                                 | 15.4              | 6.7  |
|       | 51.4 | 4.9             | 318                        | 5.1                         | 5.1                         | 13.8                                 | 11.4              | 17.1 |
|       | 68.9 | 3.1             | 312                        | 19.3                        | 6.9                         | 12.3                                 | 11.7              | 5.3  |
|       | 76.1 | 2.4             | 310                        | 14.4                        | 7.6                         | 13.6                                 | 13.3              | 2.2  |
|       | 22.2 | 7.8             | 160                        | 2.2                         | 2.2                         | 5.95                                 | 6.60              | 10.8 |
|       | 83.5 | 3.3             | 283                        | 16.7                        | 16.7                        | 11.4                                 | 11.5              | 1.3  |
|       | 84.3 | 1.6             | 308                        | 30.3                        | 8.4                         | 11.3                                 | 10.3              | 9.1  |
|       | 59.9 | 4.0             | 315                        | 27.9                        | 6.0                         | 10.7                                 | 9.79              | 8.5  |

**Table 3.** Kinetic data for CO methanation on the (37.5% NiO + 10.2% CaO)/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> catalyst

| T, °C | x, % | $P_{\text{CO}}$ | $P_{\text{H}_2}$ | $P_{\text{H}_2\text{O}}$ | $P_{\text{CH}_4}$ | $r_{\text{exp}}$ | $r_{\text{calc}}$ | $\Delta, \%$ |
|-------|------|-----------------|------------------|--------------------------|-------------------|------------------|-------------------|--------------|
|       |      |                 |                  |                          |                   | hPa              |                   |              |
| 180   | 53.0 | 7.0             | 476              | 8.0                      | 8.0               | 4.89             | 5.25              | 7.5          |
|       | 22.0 | 11.7            | 490              | 3.3                      | 3.3               | 6.09             | 6.08              | 0.15         |
|       | 12.0 | 13.2            | 495              | 1.8                      | 1.8               | 6.64             | 6.19              | 6.8          |
|       | 17.0 | 12.4            | 492              | 14.9                     | 2.6               | 4.18             | 3.48              | 17.7         |
|       | 8.0  | 13.8            | 496              | 23.1                     | 1.2               | 2.95             | 2.58              | 12.5         |
|       | 19.0 | 16.2            | 189              | 3.8                      | 3.8               | 3.11             | 3.42              | 9.9          |
|       | 13.0 | 17.4            | 192              | 2.6                      | 2.6               | 3.20             | 3.46              | 8.2          |
|       | 50.0 | 10.0            | 470              | 10.0                     | 10.0              | 4.10             | 4.44              | 8.3          |
|       | 11.0 | 17.8            | 493              | 2.2                      | 2.2               | 5.41             | 5.04              | 6.9          |
|       | 17.0 | 12.4            | 492              | 2.6                      | 12.6              | 6.27             | 6.14              | 2.1          |
|       | 11.0 | 13.4            | 495              | 14.0                     | 1.6               | 4.06             | 3.57              | 12.0         |
|       | 48.0 | 5.2             | 471              | 4.8                      | 4.8               | 5.90             | 6.77              | 14.7         |
| 200   | 83.0 | 2.6             | 463              | 12.4                     | 12.4              | 7.65             | 7.06              | 7.7          |
|       | 47.0 | 8.0             | 479              | 7.0                      | 7.0               | 13.0             | 12.3              | 5.7          |
|       | 35.0 | 9.8             | 484              | 5.2                      | 5.2               | 12.9             | 12.8              | 0.84         |
|       | 18.0 | 12.3            | 492              | 2.7                      | 2.7               | 13.3             | 13.1              | 1.1          |
|       | 11.0 | 13.4            | 495              | 1.6                      | 1.6               | 12.2             | 13.2              | 8.3          |
|       | 55.0 | 4.5             | 467              | 5.5                      | 5.5               | 13.5             | 14.1              | 4.4          |
|       | 41.0 | 5.9             | 475              | 4.1                      | 4.1               | 15.1             | 15.5              | 2.4          |
|       | 15.0 | 17.0            | 491              | 3.0                      | 3.0               | 11.1             | 10.8              | 2.6          |
|       | 14.0 | 17.2            | 192              | 2.8                      | 2.8               | 6.89             | 7.47              | 8.5          |
|       | 9.00 | 18.2            | 194.6            | 1.8                      | 1.8               | 6.64             | 7.48              | 12.6         |
|       | 61.0 | 5.8             | 473              | 9.2                      | 19.2              | 11.2             | 11.1              | 1.4          |
|       | 43.0 | 8.5             | 481              | 6.4                      | 16.4              | 11.9             | 12.5              | 4.9          |
|       | 14.0 | 12.9            | 494              | 14.5                     | 2.1               | 7.75             | 8.12              | 4.8          |
|       | 11.0 | 13.4            | 495              | 23.6                     | 1.6               | 6.09             | 6.06              | 0.48         |
| 220   | 76.0 | 4.8             | 704              | 15.2                     | 15.2              | 18.7             | 18.4              | 1.6          |
|       | 89.0 | 2.2             | 447              | 17.8                     | 17.8              | 10.9             | 10.2              | 6.4          |
|       | 73.0 | 5.4             | 456              | 14.6                     | 14.6              | 18.0             | 17.4              | 2.8          |
|       | 60.0 | 8.0             | 464              | 12.0                     | 12.0              | 22.1             | 20.1              | 9.2          |
|       | 51.0 | 9.8             | 469              | 10.2                     | 10.2              | 25.1             | 21.1              | 16.1         |
|       | 44.0 | 11.2            | 304              | 5.5                      | 8.8               | 21.6             | 21.0              | 2.8          |
|       | 20.0 | 16.0            | 188              | 4.0                      | 4.0               | 14.8             | 15.2              | 3.0          |
|       | 93.0 | 1.0             | 458              | 14.0                     | 14.0              | 8.58             | 8.07              | 5.9          |
|       | 73.0 | 4.0             | 467              | 10.9                     | 10.9              | 20.2             | 20.2              | 0.03         |
|       | 73.0 | 1.3             | 489              | 3.6                      | 3.6               | 26.9             | 24.5              | 8.9          |
|       | 39.0 | 3.0             | 494              | 2.0                      | 2.0               | 33.6             | 37.9              | 13.0         |
|       | 87.0 | 1.3             | 448              | 8.7                      | 8.7               | 16.05            | 14.38             | 10.39        |
|       | 69.0 | 3.1             | 459              | 6.9                      | 6.9               | 21.2             | 24.8              | 17.2         |
|       | 49.0 | 5.1             | 471              | 4.9                      | 4.9               | 27.1             | 30.2              | 11.5         |
|       | 38.0 | 6.2             | 477              | 3.8                      | 3.8               | 28.0             | 31.7              | 13.1         |
|       | 75.0 | 7.5             | 432              | 22.5                     | 22.5              | 13.8             | 13.0              | 6.1          |
|       | 75.0 | 3.8             | 466              | 18.0                     | 11.2              | 13.8             | 13.3              | 3.7          |
|       | 53.0 | 7.0             | 476              | 14.8                     | 8.0               | 19.6             | 18.0              | 7.7          |
|       | 40.0 | 9.0             | 482              | 12.8                     | 6.0               | 22.1             | 19.4              | 12.2         |
|       | 67.0 | 5.0             | 470              | 22.4                     | 10.0              | 12.4             | 12.1              | 2.3          |
|       | 44.0 | 8.4             | 480              | 19.0                     | 6.6               | 16.2             | 15.4              | 5.0          |
|       | 30.0 | 10.5            | 486              | 16.9                     | 4.5               | 16.6             | 16.5              | 0.51         |
|       | 24.0 | 11.4            | 489              | 16.0                     | 3.6               | 17.7             | 16.8              | 4.8          |
|       | 34.0 | 9.9             | 485              | 27.0                     | 5.1               | 12.5             | 12.0              | 4.1          |
|       | 74.0 | 3.9             | 467              | 11.1                     | 26.1              | 20.5             | 19.8              | 3.1          |
|       | 92.0 | 1.2             | 459              | 13.8                     | 33.8              | 8.48             | 9.00              | 6.1          |
|       | 65.0 | 5.2             | 471              | 9.8                      | 29.8              | 24.0             | 22.6              | 5.9          |

Table 3. (Contd.)

| T, °C | x, % | P <sub>CO</sub> | P <sub>H<sub>2</sub></sub> | P <sub>H<sub>2</sub>O</sub> | P <sub>CH<sub>4</sub></sub> | r <sub>exp</sub>                     | r <sub>calc</sub> | Δ, % |
|-------|------|-----------------|----------------------------|-----------------------------|-----------------------------|--------------------------------------|-------------------|------|
|       |      | hPa             |                            |                             |                             | mmol g <sup>-1</sup> h <sup>-1</sup> |                   |      |
| 240   | 72.0 | 4.2             | 468                        | 10.8                        | 10.8                        | 44.3                                 | 41.2              | 7.0  |
|       | 55.0 | 6.8             | 475                        | 8.25                        | 8.25                        | 50.7                                 | 47.9              | 5.6  |
|       | 38.0 | 9.3             | 483                        | 5.7                         | 5.7                         | 56.1                                 | 50.0              | 10.8 |
|       | 27.0 | 11.0            | 488                        | 4.0                         | 4.0                         | 59.8                                 | 50.2              | 16.0 |
|       | 70.0 | 6.0             | 458                        | 14.0                        | 14.0                        | 34.4                                 | 36.9              | 7.3  |
|       | 60.0 | 8.0             | 464                        | 12.0                        | 12.0                        | 44.3                                 | 40.0              | 9.6  |
|       | 28.0 | 14.4            | 183                        | 5.6                         | 5.6                         | 27.5                                 | 29.5              | 7.1  |
|       | 76.0 | 3.6             | 466                        | 23.8                        | 11.4                        | 21.0                                 | 21.2              | 1.1  |
|       | 56.0 | 6.6             | 475                        | 20.8                        | 8.4                         | 31.0                                 | 29.0              | 6.5  |
|       | 70.0 | 4.5             | 468                        | 30.5                        | 10.5                        | 19.4                                 | 18.3              | 5.5  |
|       | 49.0 | 7.6             | 478                        | 27.3                        | 7.4                         | 27.1                                 | 24.0              | 11.4 |

(5)  $[\text{HCOH}]Z + Z = [\text{CH}]Z + [\text{OH}]Z$ ,  
 (6)  $[\text{CH}]Z + \text{HZ} = [\text{CH}_2]Z + Z$ ,  
 (7)  $[\text{CH}_2]Z + \text{HZ} = [\text{CH}_3]Z + Z$ ,  
 (8)  $[\text{CH}_3]Z + \text{HZ} = \text{CH}_4 + 2Z$ ,  
 (9)  $[\text{OH}]Z + \text{HZ} = [\text{H}_2\text{O}]Z + Z$ ,  
 (10)  $[\text{H}_2\text{O}]Z = \text{H}_2\text{O} + Z$ .

The observation of a kinetic isotope effect [29] suggests that steps (3) and (4) can be slow. The above rate

equation is consistent only with the assumption that step (3) is slow. If the reaction proceeds at high adsorbate coverages of the surface, a rate equation identical to the equation found experimentally [28] follows from the step-by-step reaction scheme.

Thus, we studied the kinetics of CO methanation on different nickel catalysts and found that the experimental data can be described by the same rate equation. We determined the slow step of the process and

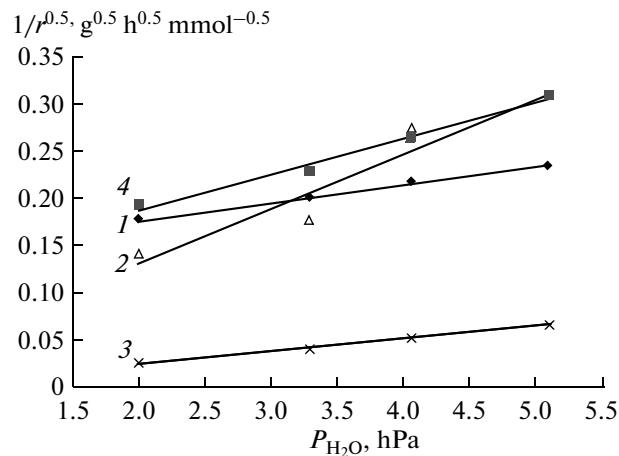



Fig. 6. Dependence of  $1/r^{0.5}$  on  $P_{\text{H}_2\text{O}}$  at  $220^\circ\text{C}$ ,  $P_{\text{H}_2} = 200$  hPa, and  $P_{\text{CO}} = 6.0$  hPa for the following catalysts: (1) NiTi, (2) NiAl, (3) NiCaAl, and (4) NiCeAl.

**Table 4.** Kinetic data obtained in the study of the reaction of CO methanation on the (37.5% NiO + 0.1% Ce<sub>2</sub>O<sub>3</sub>)/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> catalyst

| T, °C | x, % | <i>P</i> <sub>CO</sub> | <i>P</i> <sub>H<sub>2</sub></sub> | <i>P</i> <sub>H<sub>2</sub>O</sub> | <i>P</i> <sub>CH<sub>4</sub></sub> | <i>r</i> <sub>exp</sub>              | <i>r</i> <sub>calc</sub> | $\Delta, \%$ |
|-------|------|------------------------|-----------------------------------|------------------------------------|------------------------------------|--------------------------------------|--------------------------|--------------|
|       |      | hPa                    |                                   |                                    |                                    | mmol g <sup>-1</sup> h <sup>-1</sup> |                          |              |
| 180   | 49.8 | 5.0                    | 318                               | 5.0                                | 5.0                                | 1.1                                  | 1.2                      | 7.0          |
|       | 27.0 | 7.3                    | 325                               | 2.7                                | 2.7                                | 1.2                                  | 1.4                      | 12.4         |
|       | 19.8 | 8.0                    | 327                               | 2.0                                | 2.0                                | 1.3                                  | 1.4                      | 4.6          |
|       | 10.1 | 9.0                    | 330                               | 1.0                                | 1.0                                | 1.35                                 | 1.42                     | 4.8          |
|       | 18.0 | 8.2                    | 328                               | 1.8                                | 1.8                                | 1.21                                 | 1.39                     | 15.6         |
|       | 10.5 | 4.5                    | 331                               | 0.53                               | 0.53                               | 1.41                                 | 1.51                     | 7.1          |
|       | 19.3 | 16.1                   | 321                               | 3.9                                | 3.9                                | 0.86                                 | 1.06                     | 23.2         |
|       | 16.2 | 8.4                    | 328                               | 8.4                                | 1.6                                | 1.08                                 | 1.06                     | 1.6          |
|       | 9.5  | 9.0                    | 330                               | 22.9                               | 0.95                               | 0.64                                 | 0.67                     | 5.0          |
| 200   | 29.2 | 7.1                    | 491                               | 2.9                                | 2.9                                | 3.91                                 | 3.85                     | 1.6          |
|       | 17.6 | 8.2                    | 495                               | 1.8                                | 1.8                                | 4.71                                 | 3.86                     | 18.0         |
|       | 49.1 | 5.1                    | 318                               | 4.9                                | 4.9                                | 3.29                                 | 3.48                     | 5.9          |
|       | 36.0 | 6.5                    | 322                               | 3.6                                | 3.6                                | 3.62                                 | 3.57                     | 1.4          |
|       | 27.0 | 7.3                    | 325                               | 2.7                                | 2.7                                | 3.62                                 | 3.58                     | 1.1          |
|       | 13.0 | 8.7                    | 329                               | 1.3                                | 1.3                                | 3.48                                 | 3.55                     | 1.8          |
|       | 40.3 | 3.0                    | 327                               | 2.0                                | 2.0                                | 4.05                                 | 4.03                     | 0.53         |
|       | 28.2 | 3.6                    | 329                               | 1.4                                | 1.4                                | 3.78                                 | 4.23                     | 11.9         |
|       | 20.0 | 8.0                    | 327                               | 8.8                                | 2.0                                | 2.67                                 | 2.83                     | 5.8          |
|       | 31.0 | 6.9                    | 324                               | 15.5                               | 3.1                                | 2.07                                 | 2.31                     | 11.9         |
|       | 17.0 | 8.3                    | 328                               | 14.1                               | 1.7                                | 2.28                                 | 2.39                     | 4.9          |
|       | 25.6 | 7.4                    | 325                               | 24.5                               | 2.6                                | 1.71                                 | 1.79                     | 4.6          |
|       | 15.0 | 8.5                    | 328                               | 23.4                               | 1.5                                | 2.00                                 | 1.85                     | 7.4          |
| 220   | 69.9 | 3.0                    | 646                               | 6.9                                | 6.9                                | 9.36                                 | 8.95                     | 4.4          |
|       | 42.2 | 5.8                    | 654                               | 4.2                                | 4.2                                | 11.3                                 | 9.72                     | 14.0         |
|       | 25.1 | 3.75                   | 329                               | 1.25                               | 1.25                               | 6.71                                 | 8.04                     | 19.7         |
|       | 78.4 | 2.2                    | 476                               | 7.8                                | 7.5                                | 7.87                                 | 7.85                     | 0.34         |
|       | 44.7 | 5.5                    | 487                               | 4.5                                | 4.5                                | 8.99                                 | 9.21                     | 2.5          |
|       | 37.1 | 6.3                    | 489                               | 3.7                                | 3.7                                | 9.93                                 | 9.11                     | 8.3          |
|       | 26.0 | 7.4                    | 492                               | 2.6                                | 2.6                                | 10.47                                | 8.89                     | 15.1         |
|       | 30.3 | 7.0                    | 324                               | 3.0                                | 3.7                                | 8.11                                 | 8.07                     | 0.47         |
|       | 16.3 | 8.4                    | 328                               | 1.6                                | 2.3                                | 8.72                                 | 7.70                     | 11.7         |
|       | 88.1 | 2.4                    | 280                               | 17.6                               | 16.5                               | 3.93                                 | 4.71                     | 19.7         |
|       | 62.4 | 7.5                    | 300                               | 12.5                               | 9.5                                | 5.57                                 | 5.80                     | 4.0          |
|       | 31.6 | 13.7                   | 314                               | 6.3                                | 5.9                                | 5.63                                 | 5.09                     | 9.6          |
|       | 53.8 | 13.8                   | 284                               | 16.2                               | 16.2                               | 3.61                                 | 4.10                     | 13.8         |
|       | 39.7 | 18.1                   | 297                               | 11.9                               | 11.9                               | 3.98                                 | 3.81                     | 4.3          |
|       | 29.9 | 21.0                   | 306                               | 9.0                                | 9.0                                | 4.00                                 | 3.62                     | 9.5          |
|       | 75.8 | 2.4                    | 310                               | 14.4                               | 7.6                                | 5.07                                 | 5.59                     | 10.2         |
|       | 30.6 | 6.9                    | 324                               | 9.9                                | 3.1                                | 6.14                                 | 6.57                     | 7.0          |
|       | 15.8 | 8.4                    | 328                               | 8.4                                | 1.6                                | 6.37                                 | 6.40                     | 0.52         |
|       | 89.0 | 1.1                    | 306                               | 21.3                               | 8.9                                | 2.98                                 | 2.75                     | 7.85         |
|       | 83.0 | 1.7                    | 308                               | 30.2                               | 8.3                                | 2.78                                 | 2.50                     | 10.1         |
|       | 71.8 | 2.8                    | 311                               | 29.1                               | 7.2                                | 3.20                                 | 3.36                     | 4.8          |
| 240   | 93.1 | 0.65                   | 472                               | 9.4                                | 9.4                                | 12.5                                 | 11.8                     | 5.6          |
|       | 81.3 | 1.9                    | 476                               | 8.1                                | 8.1                                | 21.8                                 | 19.6                     | 10.0         |
|       | 89.4 | 1.1                    | 306                               | 8.9                                | 8.9                                | 12.0                                 | 15.2                     | 27.3         |
|       | 80.4 | 2.0                    | 309                               | 8.0                                | 8.0                                | 16.2                                 | 18.6                     | 15.1         |
|       | 69.3 | 3.1                    | 312                               | 6.9                                | 6.9                                | 18.6                                 | 19.2                     | 3.6          |
|       | 53.1 | 4.7                    | 317                               | 5.3                                | 5.3                                | 21.3                                 | 18.2                     | 14.9         |
|       | 42.0 | 5.8                    | 320                               | 4.2                                | 4.2                                | 22.5                                 | 17.1                     | 24.0         |
|       | 72.3 | 2.8                    | 311                               | 19.6                               | 7.2                                | 9.68                                 | 11.8                     | 21.7         |
|       | 42.7 | 5.7                    | 320                               | 26.2                               | 4.3                                | 8.57                                 | 9.85                     | 14.9         |
|       | 31.0 | 6.9                    | 324                               | 25.0                               | 3.1                                | 8.30                                 | 9.78                     | 17.8         |

**Table 5.** Constants of Eq. (2) and the root-mean-square deviations of calculated reaction rates from experimental values

| Catalyst | $k_1$ , mmol g <sup>-1</sup> h <sup>-1</sup> hPa <sup>-1.5</sup> | $k_2$ , hPa <sup>-0.5</sup>      | $k_3$ , hPa <sup>-1</sup>        | $k_4$ , hPa <sup>-1</sup>          | $\Delta$ , % |
|----------|------------------------------------------------------------------|----------------------------------|----------------------------------|------------------------------------|--------------|
| NiTi     | $9.90 \times 10^1 e^{-0.56/T}$                                   | $1.82 \times 10^{-9} e^{9684/T}$ | $1.23 \times 10^{-1} e^{1837/T}$ | $8.66 \times 10^{-12} e^{12063/T}$ | 20           |
| NiAl     | $6.00 \times 10^4 e^{-2483/T}$                                   | $6.30 \times 10^{-2} e^{1505/T}$ | $2.00 \times 10^{-2} e^{3018/T}$ | $8.67 \times 10^{-18} e^{19627/T}$ | 25           |
| NiCaAl   | $4.55 \times 10^2 e^{-3117/T}$                                   | $6.91 \times 10^{-4} e^{1766/T}$ | $1.02 \times 10^{-3} e^{2549/T}$ | $1.02 \times 10^{-5} e^{4251/T}$   | 17           |
| NiCeAl   | $6.02 \times 10^2 e^{-1549/T}$                                   | $5.18 \times 10^{-8} e^{7587/T}$ | $1.60 \times 10^{-2} e^{2386/T}$ | $8.20 \times 10^{-7} e^{6345/T}$   | 18           |

evaluated the role of the support and calcium and cerium dopants in nickel catalysts.

### ACKNOWLEDGMENTS

This study was supported by the Russian Foundation for Basic Research and the Vietnamese Academy of Science and Technology (grant no. 09-03-90301 Viet\_a).

### REFERENCES

- Vlasenko, V.M. and Yuzefovich, G.E., *Usp. Khim.*, 1969, vol. 38, no. 9, p. 1622.
- Vlasenko, V.M., Yuzefovich, G.E., and Rusov, M.T., *Kinet. Katal.*, 1965, vol. 6, no. 4, p. 688.
- Kreindel', A.I., Sobolevskii, V.S., Golosman, E.Z., and Yakerson, V.I., *Kinet. Katal.*, 1974, vol. 15, no. 2, p. 408.
- Kon'on, Zh.-M. and Margaren, Zh., *Kinet. Katal.*, 1975, vol. 16, no. 6, p. 1552.
- Sehested, J., Dahl, S., Jacobsen, J., and Rostrup-Nielsen, J.R., *J. Phys. Chem. B*, vol. 109, no. 6, p. 2432.
- Vannice, M.A., *Catal. Rev. Sci. Eng.*, 1976, vol. 14, no. 2, p. 1.
- Ekert, J.G. and Bell, A.T., *J. Catal.*, 1979, vol. 58, no. 1, p. 170.
- Jacobs, P.A. and Nijs, H.H., *J. Catal.*, 1980, vol. 64, no. 2, p. 251.
- Ross, J.R.H., *J. Catal.*, 1981, vol. 71, no. 1, p. 205.
- Mori, M., Masuda, H., Imai, H., Miyamoto, A., Baba, S., and Murakami, Y., *J. Phys. Chem.*, 1982, vol. 86, no. 14, p. 2753.
- Polizzoti, R.S. and Schwarz, J.A., *J. Catal.*, 1982, vol. 77, no. 1, p. 1.
- Dalmon, J.A. and Martin, G., *J. Catal.*, 1983, vol. 84, no. 1, p. 45.
- Hayes, R.E., Thomas, W.J., and Hayes, K.E., *J. Catal.*, 1985, vol. 92, no. 2, p. 312.
- Alstrup, I., *J. Catal.*, 1995, vol. 151, no. 1, p. 216.
- Ho, S.V. and Harriott, P., *J. Catal.*, 1980, vol. 64, no. 2, p. 272.
- Schoubye, P., *J. Catal.*, 1969, vol. 14, no. 3, p. 238.
- Huang, C.P. and Richardson, J.T., *J. Catal.*, 1978, vol. 51, no. 1, p. 1.
- Meerten, R.Z.C., Vollenbroek, J.G., Croon, M.H.J.M., Nisselrooy, P.F.M.T., and Coenen, J.W.E., *Appl. Catal.*, 1982, vol. 3, no. 1, p. 29.
- Klose, J. and Baerns, M., *J. Catal.*, 1984, vol. 85, no. 1, p. 105.
- Coenen, J.W.E., Nisselrooy, P.F.M.T., Croon, M.H.J.M., Dooren, P.F.H.A., and Meerten, R.Z.C., *Appl. Catal.*, 1986, vol. 25, no. 1, p. 1.
- Mey, F., Spinder, H., Rohlander, W., and Wejbenborn, H., *Chem. Tech.*, 1986, vol. 38, no. 7, p. 300.
- Demmin, R.A. and Gorte, R.J., *J. Catal.*, 1987, vol. 105, no. 2, p. 373.
- Ibraeva, Z.A., Nekrasov, N.V., Yakerson, V.I., Gudkov, B.S., Golosman, E.Z., Beisembaeva, Z.T., and Kiperman, S.L., *Kinet. Katal.*, 1987, vol. 28, no. 2, p. 386.
- Yadav, R. and Rinker, R.G., *Can. J. Chem. Eng.*, 1993, vol. 71, no. 3, p. 202.
- Kopyscinski, J., Schidhauer, T.J., Vogel, F., Biollaz, S.M.A., and Wokaun, A., *J. Catal.*, 2010, vol. 271, no. 2, p. 262.
- Stytsenko, V.D., Apostol, E.S., and Rozovskii, A.Ya., *Tezisy dokl. Vses. konf. "Khimicheskie sintezy na osnove odnouglеродных молекул"* (Proc. All-Union Conf. on Chemical Syntheses Based on Single-Carbon Molecules), Moscow, 1987, p. 24.
- Stytsenko, V.D., *Zh. Prikl. Khim.*, 1990, vol. 63, no. 4, p. 933.
- Kiperman, S.L., *Vvedenie v kinetiku geterogenykh kataliticheskikh reaktsii* (Introduction to the Kinetics of Heterogeneous Catalytic Reactions), Moscow: Nauka, 1964.
- Luu Cam Loc, Nguyen Manh Huan, Gaidai, N.A., Ho Si Thoang, Nekrasov, N.V., Agafonov, Yu.A., and Lapidus, A.L., *Kinet. Catal.*, 2011, vol. 52, no. 5, p. 749.
- Loc, L.C., Huan, N.M., Dung, N.K., Phuc, N.H., and Thoang, H.S., *Adv. Nat. Sci.*, 2006, vol. 7, nos. 1–2, p. 91.
- Huan, N.M., Loc, L.C., and Dung, N.K., *J. Chem.*, 2007, vol. 45, no. 2, p. 169.
- Loc, L.C. and Huan, N.M., *J. Chem.*, 2007, vol. 45, no. 1, p. 33.
- Huan, N.M., Loc, L.C., Dung, N.K., and Thoang, H.S., *Adv. Nat. Sci.*, 2008, vol. 9, no. 1, p. 69.
- Bashkirova, S.G. and Kiperman, S.L., *Kinet. Katal.*, 1970, vol. 11, no. 3, p. 631.